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1. Multiple input–multiple output problem

Conventional methods for the separation of inputs contribution to a signal of interest involve
the extraction of statistically independent virtual inputs (principal component analysis and other
techniques [1–5]). However, in practical applications, measured inputs are often coherent at many
frequencies. Some researchers suggest further separation of incoherent inputs into non-interfering
and interfering ones [6]. If a system is characterized by multiple partly coherent and interfering
inputs, their separation into coherent non-interfering inputs without the use of advanced
diagnostic techniques is almost impossible. Frequently, this type of task requires acquisition
of additional data, which is difficult to perform in a non-laboratory environment [7,8].
The complexity of the problem substantially gets higher as the number of input increases.
Nonetheless it is possible to solve the problem in some particular cases just utilizing the originally
measured data.
For the purpose of simplicity, let us consider a system with two inputs X 1 and X 2; multiple

outputs Y 1;Y 2; . . . ;Y i; . . . ;Y n; the action of noise components N1;N2; . . . ;Ni; . . . ;Nn; and where
H11;H1i; . . . ;H2i are transfer functions with the first and second indices representing the input
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Block diagram for two input/multiple output problem.
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Fig. 2. Probable variants for interfering inputs. (a) The first input interferes the second; (b) the second input interferes

the first.
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and output, respectively (Fig. 1). Here, the principle component analysis or other engineering
rationales indicate that most likely one of the inputs influences the other.
The situation has an ambiguity since the independent input is not known. A couple of

probable cases are shown in Fig. 2, where H1 and H2 are transfer functions between
measured inputs and outputs, H1v and H2v are transfer functions of the probable inter-
fering paths. The task involves extraction of the virtual input matrix SV from the measured
input matrix SM : Note that SV corresponds to partly coherent non-interfering (independent)
inputs. We have:

SV ðf Þ ¼
S11ðf Þ S12vðf Þ

S�
12vðf Þ S2v2vðf Þ

" #
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or

SV ðf Þ ¼
S1v1vðf Þ S1v2ðf Þ

S�
1v2ðf Þ S22ðf Þ

" #
, (1)

where S11 and S22 are the measured input autospectrums, S1v1v and S2v2v are the virtual input
autospectrums of non-interfering inputs, S12v and S1v2 are the virtual input cross-spectrums, f is
frequency and superscript � denotes complex conjugate. Also other unknowns in the block
diagrams in Fig. 2 should be calculated.
The virtual input is understood as an input extracted from the original measurement data. It is

refined from the contribution of the interfering signal, i.e. the virtual input spectra do not depend
on another input (however there can be partial coherence irrespective of interference between
virtual inputs). One of the measured inputs is independent since it is not influenced by the
contribution of another input via the interfering path.
2. Problem criterion and mathematical background

The measured input matrix SM can be represented as an eigenvalue decomposition [4,9]:

SM ¼
S11 S12

S�
12 S22

" #
¼ UH

l1 0

0 l2

" #
U, (2)

where S12 is the measured input cross-spectrum, U is the normalized eigenvector matrix, l1;2 are
eigenvalues and superscript H denotes Hermitian transpose.
From Eq. (2), the eigenvalues for the two input case can be obtained in the form:

l1;2ðf Þ ¼
S11 þ S22

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS11 � S22Þ

2

4
þ jS12j

2

s
. (3)

If both inputs are contributing, the eigenvalues must have approximately equal values [4,9]. The
relative difference between the eigenvalues is calculated as

dð f Þ ¼
jl1 � l2j

lm

,

lmð f Þ ¼
l1 þ l2
2

, ð4Þ

where lm is the mean of the eigenvalues. We can calculate d1 for the case in Fig. 2a and d2 for the
case in Fig. 2b. A correct separation of the interfering inputs gives the minimal value for d: Thus it
is proposed to employ wðf Þ; the ratio of relative differences between the eigenvalues, as a criterion
for the detection of the independent input:

wð f Þ ¼
d1ð f Þ

d2ð f Þ
. (5)

Note that if wo1; input 1 contributes to input 2. Otherwise, input 2 is independent while input 1 is
influenced by input 2.
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The criterion w can be expressed with the elements of virtual input spectra matrix shown in Fig.
2 in the form:

w ¼
S1v1v þ S22

S11 þ S2v2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25ðS11 � S2v2vÞ

2
þ jS12vj

2

0:25ðS1v1v � S22Þ
2
þ jS1v2j

2

s
. (6)

The criterion is always real and positive, and the value does not depend on the cross-spectral
phase. Note that w is a function of the absolute magnitudes of virtual and measured input
spectrums. It is needed to identify virtual autospectrums and cross-spectrums absolute magnitude
that are used to detect the non-interfering input. The virtual spectrums can be calculated from the
considerations of diagrams in Fig. 2. It is possible to utilize equations for transfer function
detection by minimizing noise on output signals technique [1,9]:

1 0

H1v 1

" #
¼

S11 S12v

S21 S22v

" #
S11 S12v

S�
12v S2v2v

" #�1

,

1 H2v

0 1

" #
¼

S11v S12

S21v S22

" #
S1v1v S1v2

S�
1v2 S22

" #�1

, ð7Þ

where virtual cross-spectrums S1v2 and S12v are found for the diagrams in Fig. 2a and b,
respectively. Equations associated with the second matrix row for the first case and with the first
row for the second case are a matter of interest. Thus there are two independent equations
with four unknown variables. The matrix component S22v or S11v can be found through other
variables [1,2]:

S22v ¼ S12vH1v þ S2v2v,

S11v ¼ S21vH2v þ S1v1v. ð8Þ

In spite of the fact that the number of unknowns in Eqs. (7) and (8) is greater than the number
of equations, they can be resolved with respect to the cross-spectral component of the virtual
input matrix (S12v or S1v2) to obtain solution expressed by known variables only:

S12v ¼ � det
S11 S12v

S�
12v S2v2v

" #,
S�
12,

S1v2 ¼ � det
S1v1v S1v2

S�
1v2 S22

" #,
S12. ð9Þ

It can be proved that if the measured and virtual signals have a negligible noise contribution,
the determinants of the measured and virtual matrices are equal (see Appendix A):

det
S11 S12v

S�
12v S2v2v

" #
¼ det

S11 S12

S�
12 S22

" #
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or

det
S1v1v S1v2

S�
1v2 S22

" #
¼ det

S11 S12

S�
12 S22

" #
. (10)

Thus unknown cross-spectral components can be found from the measured input matrix.
One can see from the expressions in Eq. (9) that the virtual cross-spectrums for probable

interference are distinct by phase only since the same real number is divided by complex
conjugates. It means that modulus of the virtual cross-spectrum is invariant and sign of the phase
is determined by the direction of the interfering signal propagation (whether from the first input to
the second or vice versa). It is also obvious that the probable virtual cross-spectrums are complex
conjugates:

S12v ¼ S�
1v2. (11)

By utilizing the relations in Eq. (10), the unknown autospectra can be expressed in the form:

S2v2v ¼
jS12vj

2 � jS12j
2

S11
þ S22

or

S1v1v ¼
jS1v2j

2 � jS12j
2

S22
þ S11. (12)

Now, the independent input is obtained by substitution of the virtual spectrums into formula
(6). Further operations are to be undertaken to express the matrix SV in terms of the separated
inputs. As it was shown above, the modulus of the virtual cross-spectrum does not depend on the
presumed independent input. Thus Eq. (6) can be expressed via the measured items only.
The interfering power can be identified from the following conventional equation:

Svv ¼ S11jH1vj
2

or

Svv ¼ S22jH2vj
2. (13)

The virtual transfer function can be easily found from Eq. (17) after the calculation of all virtual
spectral components. It is possible to find the modulus square of the virtual transfer function
using different expressions. One of them can be represented as follows:

jH1vj
2 ¼ S�1

11 ðS22 � S2v2v � 2S�1
11 ðReðS12S

�
12vÞ � jS12vj

2Þ

or

jH2vj
2 ¼ S�1

22 ðS11 � S1v1v � 2S�1
22 ðReðS12S

�
1v2Þ � jS1v2j

2Þ.

By taking into account expressions in Eqs. (9) and (10), the modulus of virtual transfer function
can be written in a different way:

jH1vj
2 ¼ S�2

11 ðjS12j
2 þ jS12vj

2 þ 2 det½SM 
 cos 2j12Þ,

jH2vj
2 ¼ S�2

22 ðjS12j
2 þ jS1v2j

2 þ 2 det½SM 
 cos 2j12Þ, ð14Þ
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where j12 is the phase of cross-spectrum S12: It can be seen from formula described above and
statement in Eq. (11) that the right-hand sides of the expressions between parentheses are equal. It
follows from Eqs. (13) and (14) that the ratio of the possible virtual power contributions is the
inverse of the measured autospectra ratio. The same conclusion can be obtained with respect to
the ratio of probable virtual autospectra ðS1v1v=S2v2vÞ from the consideration of relations in Eqs.
(10) and (11).
As modulus is a positive number, the number inside the brackets in the right-hand side in

formula (14) must be positive too. It was proved above that the modulus of the virtual cross-
spectrum is independent of the way of interference, i.e. there is no difference if the first input
influences the other or vice versa. It follows from Eqs. (11) and (14) that positive transfer function
modulus should be invariant as well. The condition can be treated as necessary for the detection if
the measured inputs interfere with each other:

jS12j
2 þ jS12vj

24� 2 det½SM 
 cos 2j12
or

S11ðS22 þ S2v2vÞ44 det½SM 
 sin2j12. (15)

Here the formula is written for the first independent input (Fig. 2a). If the second input influences
the first one, indices 1 and 2 should be exchanged. The first formula in Eq. (15) is satisfied at any
spectral component if (in a phase determined within �p interval):

0pjj12jp
p
4

or

3p
4
pjj12jpp, (16)

i.e., the interference is possible at arbitrary values of the absolute magnitudes with the phase given
in Eq. (16). When the phase takes other values, the spectral component modulus becomes of
greater importance.
3. Illustration of the proposed method implementation

To illustrate the proposed technique, let us consider a hydraulic system where the noise
radiation is substantially coherent with the pressure fluctuation inside two communicating
pipelines. The pipelines interact through the bypass line with a control valve. Static pressure in the
second line is higher than in the first one so the flow direction is clear. As it is known, pressure
waves can propagate both upstream and downstream. Thus it is not obvious which line interferes
the other. Both pipelines are originally pressurized from the same source, so their pressure
fluctuations are significantly coherent for the frequencies of interest.
The system is equipped by embedded dynamic pressure sensors and the most intensive pressure

fluctuation harmonics correlating with the outer noise are estimated. The measured input matrix
components are shown in Table 1. It should be noted that not all cross-spectra in Table 1 satisfy
condition given in Eq. (16).
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Table 1

Measured input matrix components

Frequency (Hz) S11 ðPa
2Þ S22 ðPa

2Þ S12 ðPa
2Þ

235 153742 43139 70225e0:78j

649 2903616 1645 68906:3e�1:315j

708 173806 25027 65792:3e3:045j

Table 2

Virtual input matrix components

Frequency

(Hz)

1st line 2nd line Independent

contributor

Contributed

power, Svv ðPa2Þ

Virtual S1v1v Virtual S1v2 Virtual S2v2v Virtual S12v

ðPa2Þ ðPa2Þ ðPa2Þ ðPa2Þ

236 53020 �24218e�0:78j 14877 �24218e0:78j Line 2, 128765

w ¼ 1:697

649 17354 �411:8e1:315j 9.8 �411:8e�1:315j Line 2, 2896384

w ¼ 1:208

708 852.1 �322:6e�3:045j 122.7 �322:6e3:045j Line 2, 175479

w ¼ 1:069

V.V. Lenchine, J. Seok / Journal of Sound and Vibration 287 (2005) 374–382380
Virtual spectra and transfer function are calculated in accordance with formulas in Eqs. (9),
(12)–(14), and the results are summarized in Table 2. In accordance with Eq. (6), the pressure
disturbances from pipeline 2 interfere with the pressure fluctuations from pipeline 1. Moreover
contribution from the interfering input Svv surpasses the independent power input S1v1v:
Coherence between the virtual non-interfering inputs for frequencies 649 and 708Hz is
insignificant (less than 0.6%) since the magnitude of virtual cross-spectrum is negligible.
Hence approximately the same data (except data for the identification of the independent
contributor) could be obtained through the use of traditional procedures for statistically
independent inputs. However the calculated coherence becomes 25.64% at 236Hz and
exploration of the contribution from the inputs with zero coherence would bring a noticeable
error to the calculation.
Choosing an incorrect variant with the first independent input brings only minor changes to the

virtual input matrix in comparison with the measured one, i.e. the huge difference between l1 and
l2 is almost kept the same. Thus it can be considered as an additional evidence of the appropriate
independent contributor detection.
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Fig. 3. A weighted sound pressure level associated with the pressure pulsations in the original and improved hydraulic

systems. (a) Point 1, (b) point 2.
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This information enables us to predict the effect of muffler installation in different loca-
tions of the hydraulic system (in the first or the second pipe line, before the bypass junction,
after the bypass junction, in the bypass line, etc.) using the block diagram in Fig. 2b. There
are two outputs Y i; which correspond to measurement of noise at two check-up points.
Exploration of probable ways to implement a muffler indicates that it is sufficient to install a
single muffler in the first line downstream after the bypass line junction since the modulus of
transfer function H1 is significantly higher than the modulus of H2 and the power contribution to
the output from the corresponding path substantially prevails over the contribution from line 2.
The expected noise reduction is 5 dBA that has been experimentally verified afterwards.
Reduction of some particular noise components reaches up to 24 dBA (Fig. 3). Thus the
utilization of the proposed technique eliminates the need to execute extra diagnostic
measurements and the consecutive path analysis allows optimizing the number of mufflers and
locations for the installation.
4. Conclusions

This paper describes a new technique to extract the non-interfering (virtual) input
spectral matrix from the measured data without any additional data acquisition. The proposed
technique is based on the analytical solution of spectrum relations for a multiple output
system with two interfering inputs. To avoid ambiguity that could influence the indepen-
dent contributor detection, the ratio of the relative difference between eigenvalues of the virtual
input spectra matrix is proposed as a criterion that can be utilized for the identification of
the independent input. Additional data such as virtual transfer function and interfering power
can be calculated by conventional procedures from the consideration of corresponding block
diagram. The method is easy to implement and does not require any complex computation
procedure.
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Appendix A

If noise in a linear system is negligible in comparison with signals of interest, input and output
matrices are related as follows [1,2,5,6]:

1 0

H1v 1

" #
S11 S12v

S�
12v S2v2v

" #
1 0

H1v 1

" #H
¼

S11 S12

S21 S22

" #
,

1 H2v

0 1

" #
S1v1v S12v

S�
12v S22

" #
1 H2v

0 1

" #H
¼

S11 S12

S21 S22

" #
, ð17Þ

hence it can be written with respect to determinants:

det
1 0

H1v 1

" #
det

S11 S12v

S�
12v S2v2v

" #
det

1 0

H1v 1

" #H
¼ det

S11 S12

S21 S22

" #
,

det
1 H2v

0 1

" #
det

S1v1v S12v

S�
12v S22

" #
det

1 H2v

0 1

" #H
¼ det

S11 S12

S21 S22

" #
.

As the determinant of the transfer function matrix equals unity, one can write:

det
S11 S12v

S�
12v S2v2v

" #
¼ det

S11 S12

S21 S22

" #
,

det
S1v1v S12v

S�
12v S22

" #
¼ det

S11 S12

S21 S22

" #
,

The same relation can be obtained through the consideration of algebraic relations between
measured and virtual spectral components [2,9] with the assumption that multiple coherence
between measured inputs and virtual inputs is unity.
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